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Abstract

A thermodynamic analysis of the process of first-order phase transitions in finite systems under
adiabatic conditions is given. It is shown, that similar to transitions under isothermal constraints de-
pletion effects lead to the existence of an additional negatlve semldeﬁmte term AW in the expression
for the work of formation of the critical clusters:- S :

Moreover, depletion or finite size effects result in variations of. the parameters of the critical clusters
which overcompensate the influence of the term AW and lead to an increase of the work of formation
of the critical clusters. Again, there exists a lower limit of the total volume of the system for which
transmons may proceed via the mechanism of homogeneous nucleation.

The general results aré illustrated by the process of condensation of a gas in one-component systems.
Tt is shown, in particular, that in contrast to the isothermal case variations of the temperature of the
system due to the transition may result in the existence of an additional minimum of the thermodynamic
potential also for one-component systems under a constant external pressure.

1 Introductlon

The classical nucleation theory developed by VOLMER [1] KaiscHEW and STRANSKI [2],
BeCKER and DOERING [3], FRENKEL [4], ZELDOVICH [5] and others is based upon two
results of thermodynamic investigations, the possibility to describe surface effects by the
macroscopic value of the surface tension ¢ and the existence of a critical cluster size.
As one main result of the theory the time-independent steady-state nucleation rate is
derived. :

This steady-state nucleation rate 7 is connected with the work of formation of the
critical clusters W by eq. (1.1).

I=1, exp< Z) ‘ (1.1)

k being the Boltzmann constant and 7" the absolute temperature. The exact value of the
kinetic factor I, differs in dependence on what type of approx1mat10n was used in the
derivation of eq. (1.1).

The general structure of eq. (1.1) is maintained also in modlﬁcatlons of the classical
nucleation theory (see, e.g., [6-8, 23]), proposed in the last decades.

Non-stationary effects in nucleation arise from two sources. First of all, some period
of time is needed to establish the stationary nucleation rate (time-lag in nucleation) and,

! Dr. sc. JURN ScHMELZER und Dipl.-Phys. FRANK SCHWEITZER, Sektion Physik der Wilhelm- Pleck—
Universitit Rostock, Universititsplatz 3, Rostock, DDR-2500,




6 J. ScuMELZER et al.: Thermodynamics and Nucleation I1.

second, the depletion of the medium surrounding the clusters of the new phase also
affects the nucleation rate. Such a depletion could be neglected in the classical nucleation
thery and a number of its modifications since as thermodynamic constraints constancy
of the external pressure p and the temperature 7" were assumed. These constraints are
equivalent to the consideration of nucleation in an infinite system.

In finite systems, however, the formation and gréwth of the clusters result in a deple-
tion of the medium and the kinetics of the transition depends on the constraints chosen.
Since different approaches to the description of nucleation lead qualitatively and in some
cases quantitatively to the same results we study finite size effects based on a thermo-
dynamic approach.

In a preceding paper [9] a thermodynamic analysis of the process of first-order phase
transitions was given for isothermal constraints. It was shown, that the depletion of the
medium leads to an additional negative semidefinite term AW in the expression for the
work of formation of the critical clusters. It was discussed further, how the parameters
of the critical clusters vary in dependence on depletion effects. In particular, it was shown,
that in finite systems there exists a minimum value of the size of the system, for which a
phase transition may proceed via the mechanism of homogeneous nucleation. This effect
is equivalent to the dependence of the critical temperature on the volume of the system
[10].

In a number of situations phase transitions proceed not under isothermal but adia-
batic conditions. Therefore, it is of interest to prove, whether the conclusions derived
in [9] are valid also, if instead of isothermal adiabatic constraints are assumed.

2. Work of Formation of Critical Clusters in Finite Systems

The minimum possible work which has to be supplied to a metastable homogeneous
system to generate from outside a critical cluster, the work done in a reversible process,
is called the work of formation of a critical cluster. But since reversible adiabatic pro-
cesses are isentropic processes, the total entropy S of the system is constant '

£ const. : 2.1

and in a first approximation there is no need in a thermodynamic analysis of nucleation
to divide between isentropic and adiabatic processes (for the details, see [24]).

In addition to the constraint (2.1) we assume that the total number of moles of the
different components n;, i = 1, 2, ..., k and either the pressure p or the total volume V’
of the system are kept constant. So, two different types of constraints are considered,
expressed by egs. (2.2) and (2.3), respectively.

n; =const, i=12,..k; V = const. (2.2)
n, =const, i=1,2,...,k; p = const. (2.3)

For the two different constraints the work of formation of the critical clusters is equal
either to the change of the inner energy U or to the change of the enthalpy H = U + pV
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due to the formation of the cluster of the new phase [15]:

(2.4)

_ (AU n; = const, ¥V = const.
AH n; = const, p = const.

A denotes here the difference between the heterogeneous state and the homogeneous
metastable initial state.

The inner energy of the heterogeneous system, consisting of s clusters of the new phase
in the otherwise homogeneous medium, can be expressed by [12, 16, 17]:

V=¥ {T‘f’ SO _ Dy 4 Z uPn fi)}

j=1 i=1

+ i {T(J)S(j) + O.(J)A(l) + ZM(.})”(])}
i0
j=1

1

# is the chemical potential and A4, the surface area of the cluster. The subscript «(f)
specifies the thermodynamic parameters of the clusters (surrounding medium), the sub-
script ““0”” the surface contributions to the thermodynamic functions. Parameters with-
out a subscript refer, in general, to the homogeneous initial state.

To be definite we consider here condensation processes, the formation of clusters
with a higher compared with the medium density. According to the postulate of an inner
equilibrium underlying the thermodynamic description the variables T§ and ,u(’) can
be set equal to 7% and u?, then [12, 16, 17].

- AU and AH are given by

AU = i{(ng) T)S(I) + (p - p(u) V;j) 4- GS)AS{’
ji=1
k
+ ZI(Mfgc) - lulﬂ (1)} + S(Tﬂ —-T)+(p— Pp) vV
k
+ Zl(,u'iﬂ — W) Ny, (2.6)

AH = Z {(ng) — Tp) Séj) + (pg — (J)) V(J) + O-(J)A(J)

i=1

k k
+ Z (:“ge) — i) ”g)} + STy — 1) + Z (thig — 1) my (2.7
i=1 i=1

where the notations (2.8) are used.

D =nd +nd ISP =SP4+ 9. _ (2.8)
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The change of the inner energy is given by

r , . 2
— (y __ g 6)) ) 1))
; {(T“ T}) dS§ +< -+ )dV

¥ z W = ) dﬁﬁ-fz}. 2.9)

The same expression is obtained also for dH with the difference, that in the case of a

constant external pressure p, is equal to p.
The necessary thermodynamic equilibrium conditions read

oU =0 V = const (2.10)
0H =0 p = p; = const (2.11)
resulting in _
ZGS)
Y — pg == HD = g, (2.12)

ng)=Tﬁ5 i=1,2,..-,k; j=1725“5’

d denotes infinitesimal possible variations of the thermodynamic variables from the state
considered, r{” is the radius of the j-th cluster.

States obeylng the necessary thermodynamic equilibrium conditions (2 12) are either
stable states or unstable states of saddle-point type (critical states) [11, 12, 18]. If addi-
tional assumptions concerning the thermodynamic properties of the two phases are
made, resulting in a reduction of the number of degrees of freedom, saddle-points may
degenerate into maxima.

A substitution of egs. (2.12) into egs. (2.6) and (2.7), respectively, leads to

AU® = ¥ 40049 + (T, ~ T) S + zw,ﬁ wn+ (0 =2V,

j=1

AH® = Z $oDAD + Iz —T17)S + Z (s — 1) 1y ‘ (2.13)

Jj=
These equations are also vahd, if clusters with a lower density compared with the medium

are formed [12, 16]. -
The work of formation of critical states, in general, and one critical cluster (r = 1),

in particular, can be expressed, therefore, as a sum of terms, derived already by Gipss
[19] and a correction term AW.

r
W@ = Wains + AW, Waibes = Z %O'ij)A,(xj),
j=1

k
W=T;~T)S+(p—p) V+ _Zl(,u,-p — p)ny; V= const (2.13)
k -

=T —1)S + Z(ﬂiﬁ — p) i3 p = const.

i=1
AW is different from zero only if the state of the medium changes due to the formation
of clusters of the new phase.
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By a Taylorexpansion of Ty, ps; and u;;, with respect to the deviations of the para-
meters of the medium from the initial state it can be shown in the same way as discussed
in detail for the isothermal case, that AW is a negative semidefinite quadratic form of
the variations of the intensive variables describing the state of the medium (for the details

see [9, 16]). Consequently, eq. (2.14) holds
AW <0 . (2.14)

3. Dependence of the Parameters of the Critical Clusters on Depletion Effects

In addition to the term AW depletion effects result in a variation of the parameters
of the critical cluster, in particular, in a variation of its radius or surface area. Such
variation can have also a significant influence on the nucleation rate (see, e.g., [9, 13]).

Since for a sufficiently large system depletion effects are negligible such effects can
be studied considering the variation of the size of the system, the intensive variables of

the initial state being kept constant.
The parameters of the critical cluster are determined by eqs. (2.12), which can be

written in the following way:
[i = 141805 010> - Oka) — 1ig(Sp, 015> ---591;/3) =0
Jir1 = Ta(S-a’ Qius ++vs Oka) - Tﬂ(gﬂa O1p> "'>Qkﬂ) =0 . 3.1

~ 2 —
ﬁc+2 = —Pu (Saa Otas «+» chx) +pﬂ(S/3: O1ps «-o» Qk/l) +‘_Goz(Sa9@1a>"'ana) =0

o

As independent variables the entropy density S and the molar densities g; are chosen,
determined by '

o .
PRSI JP IR At | - (3.2)

Taking into account the constants (isochoric conditions)
n; =my + n, =const S=5;+§, = const
V=1V,+ Vs = const 3.3)

egs. (3.1) determine the independent parameters #,,, ¥,, S, as functions of the total
volume ¥, the total entropy S and the total number of moles of the different components
n;. The change of the parameters of the critical clusters or clusters in stable equilibrium
with the medium due to a variation of the size of the system, the intensive variables of
the initial state being kept constant, can be expressed, therefore, by

. ~ k ~
Adry, = AV{an Onm £ Yo Onm}

14 =1 0n
& Y k
AS, = A oS, N S_asa +Zé’z oS,
14 oS < am
(v, aV k
AV, = AV 3.4
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Applying the theory of implicite functions [20] to egs. (3.1) the partial derivatives in
egs. (3.4) can be calculated and we obtain e.g., for An,,

A;lia —_ AV{a(fl,{Z 3"'5ﬁc+1) + S‘ a(](‘13!‘27 "'7];1-{—2)
J oV, ny, ... V) oS, nyyy s V)
£ b(flafZa "-9_/;1-1—15 ﬁc+2)
. 3.5
+1=1Ql Oy Nigy vy Sy V) } (3-)
J = a(fl’f25 "'5ﬁc+15ﬁ(+2) (36)

6(ﬁlzxa ﬁZoc’ (RN ﬁko‘, S,x, le) .

Here by 0(y1, ¥z, --» Y)/0(X1, X5, ..., x,) the Jacobideterminants are denotes (see [20]).
In a more extended form we can write also

S_ﬂ -5 aﬂlﬁ + Z Oiyp — O a{“lﬁ 0f1 - 0f1
Vy 08, 7 Vs 00, Oy, ov,
Sﬂ ) Ofh2p + Z O1p — 01 Oty Of 0f,
Vﬁ OSﬂ ! Vﬂ 6@,,3 aﬁza OVa
~ AV
Anl(x e (3.7)
J

S_ﬂ ) % 1 Z Cipg — 01 pr 0fi+2 Ofis2

Ve 35, TV, 00y Ony, 9V,
If instead of the first other columns of the determinant J are replaced by the first column
of the determinant in eq. (3.7) then we get the expressions for An,,, i = 2, AS, and
AV, respectively.

If J is greater than zero, then the state determined by egs. (3.1) is a stable equilibrium
state, otherwise it is a critical state [12, 18]. Consequently, in general, the variation due
to depletion effects of the parameters of the clusters will differ in dependence whether
critical or stable states are considered.

Moreover, since the variations of the parameters of the critical clusters are linear
functions of the changes of the state of the medium due to nucleation processes they
and not the quadratic form AW determine the variation of the work of formation of
the critical clusters. Consequently, the Gibbs expression W = ¢,4,/3 is a good approxi-
mation for the work of formation of critical clusters also for finite systems under adia-
batic conditions, if in the calculation of the surface area depletion effects are taken
into account. '

If instead of isochoric isobaric conditions are assumed the final results remain the
same with the difference, that the following coefficients and their equivalent expressions
are equal to zero

0pg _ Ouig _ Opg _ Opg o7, 0 (.8)

o, v, om, 05, oV,
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4. Special Cases
4.1. Adiabatic Condensation Under Isochoric Conditions

The general results outlined in the previous chapters are illustrated now by the process
of formation of (incompressible) drops in a supersaturated metastable one-component

vapour.
It was shown earlier [9, 11, 13] that for isothermal isochoric processes the work of

formation W of a drop as a function of the radius shows a behaviour as presented in
Fig. 1. The extrema of W (W = AF, F — Helmholtz free energy)

AF=(p—ppV+ Wy —wn+ Vipy —p — olpg — ) + 0,4, (4.1)
are determined by

OAF ~ ' N _ 20,

5~ _47Tr025{9a(/uﬂ —u) —(pg—p)— - }= 0 (4.2)

or by a generalized Gibbs-Thomson equation [12, 13]

olpg — ) — (pg — p') — e _ 0 (4.3)

Fo

p' and y’ are the values of the pressure and the chemical potential for a stable liquid-
vapour coexistence at a planar interface and a given value of the temperature 7.

The change of the position of the extrema with a decreasing total volume of the system
is indicated in Fig. 1 by arrows. The decrease of the volume or the increase of the in-
fluence of depletion effects lead to an increase of r,. and a decrease of r,;, an increase
of the values of AF for the extrema. This type of behaviour is widely independent on
the actual value of the temperature supposed the initial state is a metastable state.

Realizing, that the only difference resulting from adiabatic compared with isothermal
constraints consists in an increase of the temperature of the system (latent heat of con-
densation), one can conclude, that qualitatively the variation of AU as a function of the
radius is of the same type. There exists, of course, some change in the position of the
extrema.

The direction of this variation can be obtained from eq. (4.3) by a derivation with
respect to the temperature 7, taking into account, that the positions of the extrema are
also functions of 7. We get

O ! 14 20&
(—— olpry — 1) — (pg — P') —
dr, oT re Vv
= 2 (4.4)
dr 1 0?AF
drr2 \ or? ),

But since the variation of the free energy due to the growth of an incompressible drop
in a reversible process (7, = 7}) can be expressed by

o,
dF=—SdT—{@awﬁ—u)—@p—p)— }dVa @.5)

¥y
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it follows, that eq. (4.6) is fulfilled,

oS d 20, |
(35), = (3 {e — 0 =y =) = =2 o e

The increase of the volurie of the drop may proceed under isothermal conditions only
if the latent heat of condensation is transferred to the surrounding medium. Therefore
the entropy of the system 18 decreased and we obtam

: 20, X : - :
(e {etn =)~ = = 2 }) <o B

Together with eq. (4.2) eq. (4.7) leads to the conclusion, that in adiabatic processes the
radius of the critical cluster is greater and the radius of the stable cluster is smaller
compared with the isothermal case.

Moreover, a derivation of eq. (4. 2) with respect to T for fixed values of r, results in

d [OAF d " 20
N = — 4 N B 0, — — >0
(aT (Or,, ))V Ty <6T {9 (g — 1) — (py — p) - })V

(4.8)

By the same arguments as -applied earlier we may conclude that for a defined initial
state of the system and a fixed noni-zero value of the radius r, the work of formatlon W
of a cluster is always greater for adlaba’ac compared with 1sothermal constramts (see
Fig. 2). x

A compatison of Figs. 1 and 2 indicates further that the i 1nc1ease of temperature under
adiabatic conditions dué to the latent heat of condensafion can be consrdered as a special
type of depletion. Therefore, also for the ‘adiabatic 'case variations of the positions of
- the extrema are found to proceed in agreement with the principle of le Chatelier-Braun.

W | W

l , | . . ‘ ,. /AU

Tes Ty

AF

Fig. 1 Fig. 2

Fig. 1. Work of formation of a drop as a function of its radius. The arrows indicate the
change of the position of the extrema due to depletion effects

Fig. 2. Work of formation of a cluster of the new phase for adiabatic (W = AU) and iso-
thermal (W = AF) conditions. The metastable initial state is assumed to be the same in both
cases

1
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Fig. 3. Work .of formation of an incompressible drop for isobaric isothermal (W = AG)
and for isobaric adiabatic (W = AH) conditions. The increase of temperature results
in an increase of the critical radius and may lead to an additional extremum) (mini-
mum), which does not occur for isothermal conditions

Fig. 4. Change of the enthalpy AH due to the formation of a liquid drop under adiabatic
isobaric conditions for different values of the initial volume of the system. The para-
meters are given by ¢ = 4 x 10* Jmol™, Cj = 3331J mol~t K™, Cl =
75 T mol~! K1, g, = 0.55 x 10° mol m3, ¢ =097molm™>, T= 293K, p'=
2.34 x 103 Pa, o = 0.073 Nm™', p = 1.4 x 10* Pa reflecting in some idealization
the process of condensation of water vapour [22].

Tt follows further, that, again, there exists a critical volume of the system V. If the
total volume is less than ¥, a phase transition cannot proceed via the mechanism of
homogeneous nucleation [9, 10]. Moreover, ¥, is for adiabatic conditions greater than
the corresponding value for isothermal constraints.

4.2. Adiabatic Condensation Under Isobaric Conditions

The same analysis as outlined for isochoric conditions can be easily repeated for the
isobaric case. As the result in egs. (4.1)~(4.8) F has to be replaced by the Gibbs free energy
G, uy and p, by u and p, respectively. |

For isobaric isothermal conditions and one-components systems the work of formation
of a cluster of a new phase (W = AG) can be expressed by [21]

W = AG, {—2(5’.&>3 +3 <£“-)2}. (4.9)
te o te

The change of the Gibbs free energy as a function of the radius of the cluster is presented
in Fig. 3. Since for isobaric isothermal conditions no depletion effects occur, a second
extremum, a minimum of AG, does not exist.
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For adiabatic processes, however, the growth of the drop is connected with an in-
crease of temperature, with a depletion, and, in principle, a minimum of W (W = AH)
is to be expected for some values of the radius of the drop.

These expectations can be verified by a direct calculation of the change of the enthalpy
connected with the formation of an incompressible drop. Hereby we consider a cut
through the surface AH = AH(S,, V), which corresponds to a saddle-point approxima-
tion. It is defined by the additional condition T, = Ty. From eq. (2.7) we obtain then

AH = (p - pl) Va + GaAm + ’7or{luﬂ(p’: T[}) - ,u/}(p, Tﬂ)}
+ S(Tp - T)+ ”{Mﬁ(!)a Tﬁ) — u(p, T)} (4.10)

Qualitatively the variation of AH as a function of r, is presented in Fig. 3. A minimum
can be found always, if the increase of temperature leads to an increase of p’ such,
that p'(T,;) becomes greater or equal to the external pressure.

In Fig. 4 the change of AH as a function of the radius of the drop is calculated for an
idealized special case, the heat of vaporization g, the molar heat capacities of the liquid
(C},) and the gas (C;) and the surface tension o, are assumed to be temperature indepen-
dent, the vapour is considered as a perfect gas. The dependence of the saturation pres-
sure p' on temperature is described by van’t Hoff’s law

1 1
P(Ty) = p(T) exp { _4 [~ _ __J} | @in
Y R|T, T |

From eq. (4.10) we obtain then

14
o RTI-L _ pagl1- L2 _CP_(Tﬁ — T)? (4.12)
»'(T) T,| 2 7T
c + (f‘_ - 1) c’
ntl

\

Analogous curves are obtained, if for a constant volume of the system the number
of clusters is increased, provided that all clusters are of nearly the same size.

5. Discussion

It was mentioned in the first part of these investigations [9] that the problem of the
dependence of nucleation processes in finite systems on the type of thermodynamic
constraints was formulated already by Rusanov [14]. The new results outlined here
are the following [9]):

- a strict proof is given, that independent on the thermodynamic constraints the cor-
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rection term AW to the work of formation of the critical clusters is always less or

equal to zero
— it is shown, that not the term AW but changes of the parameters of the critical clusters

determine the variation of the work of formation of the critical clusters due to deple-

tion effects
— necessary and sufficient conditions for the stability of heterogeneous systems—cluster

in the otherwise homogeneous medium——are derived [12, 18]
_ it is realized, that for the thermodynamic investigations of nucleation processes there
is no need in a first approximation to differ between isentropic and adiabatic conditions
~ the general results are applied to a number of special cases.

Moreover, for isothermal conditions based on the thermodynamic investigations a
general scenario of first-order phase transitions in finite systems was proposed and a
kinetic description of the different stages [11] and the transition as a whole [12, 13] was

given.

A comparison of the results of the thermodynamic analysis for the both considered
cases shows, that this general scenario remains valid. Also the methods used for a kinetic
description’ can be applied with modifications to phase transitions under adiabatic
conditions, as will be shown in a forthcoming paper [25].
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